A Pareto archive particle swarm optimization for multi-objective job shop scheduling
نویسنده
چکیده
In this paper, we present a particle swarm optimization for multi-objective job shop scheduling problem. The objective is to simultaneously minimize makespan and total tardiness of jobs. By constructing the corresponding relation between real vector and the chromosome obtained by using priority rule-based representation method, job shop scheduling is converted into a continuous optimization problem. We then design a Pareto archive particle swarm optimization, in which the global best position selection is combined with the crowding measure-based archive maintenance. The proposed algorithm is evaluated on a set of benchmark problems and the computational results show that the proposed particle swarm optimization is capable of producing a number of high-quality Pareto optimal scheduling plans. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Hybrid Multi-Objective Particle Swarm Optimization for Flexible Job Shop Scheduling Problem
Hybrid algorithm based on Particle Swarm Optimization (PSO) and Simulated annealing (SA) is proposed, to solve Flexible Job Shop Scheduling with five objectives to be minimized simultaneously: makespan, maximal machine workload, total workload, machine idle time & total tardiness. Rescheduling strategy used to shuffle workload once the machine breakdown takes place in proposed algorithm. The hy...
متن کاملA Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملReference Point Adaption Method for Genetic Programming Hyper-Heuristic in Many-Objective Job Shop Scheduling
Job Shop Scheduling is an important combinatorial optimisation problem in practice. It usually contains many (four or more) potentially conflicting objectives such as makespan and mean weighted tardiness. On the other hand, evolving dispatching rules using genetic programming has demonstrated to be a promising approach to solving job shop scheduling due to its flexibility and scalability. In th...
متن کاملVariable Neighborhood Particle Swarm Optimization for Multi-objective Flexible Job-Shop Scheduling Problems
This paper introduces a hybrid metaheuristic, the Variable Neighborhood Particle Swarm Optimization (VNPSO), consisting of a combination of the Variable Neighborhood Search (VNS) and Particle Swarm Optimization(PSO). The proposed VNPSO method is used for solving the multi-objective Flexible Job-shop Scheduling Problems (FJSP). The details of implementation for the multi-objective FJSP and the c...
متن کاملAn algorithm for multi-objective job shop scheduling problem
Scheduling for job shop is very important in both fields of production management and combinatorial op-timization. However, it is quite difficult to achieve an optimal solution to this problem with traditional opti-mization approaches owing to the high computational complexity. The combination of several optimization criteria induces additional complexity and new problems. In this paper, we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Industrial Engineering
دوره 54 شماره
صفحات -
تاریخ انتشار 2008